

Native Stored
Procedures Best
Practices

Exploiting Native SQL Stored Procedures

C-2 © 2017 Themis, Inc. All rights reserved.

Native Stored Procedures Best Practices

What is a Native Stored Procedure? They are simply packages, with "runtime structures"
for the SQL statements to be executed. They are simply a set of SQL statements (some SQL
procedure processing code, and some SQL DML statements). They are called just like any
external stored procedure, where the call comes into the DBM1 address space. Because
native stored procedures are DB2 objects just like the external procedures, they get defined
to the DB2 catalog and then the integrity of the parameters to be passed is protected and
checked. The source code is written entirely in SQL PL, with the program logic being part of
the stored procedure definition (within the CREATE PROCEDURE statement itself). Also
part of the CREATE PROCEDURE is the Bind parameters needed to go along with the
generated package.

DB2 finds the package, matches up the ‘Call’ to the stored procedure definition, loads the
package and executes the statements. They do not use below the bar storage, and are not
assigned a WLM to run under.

No external load module is created for native SQL language procedures. The entire
executable is contained within the package in DB2. When you create a native SQL stored
procedure, the procedural SQL statements are stored in the DB2 catalog and directory, as
are the SQL statements that are used for accessing your DB2 data. They run in the DBM1
address space, so there is no need to create a WLM environment to manage the procedures.
As a result, when you prepare a native SQL procedure, the entire executable is contained
within DB2. This simplifies the deploy process since you don’t have to worry about code
level management in load libraries and in WLM application environments.

In contrast, an external stored procedure with SQL needs a complete language environment
for the user program, and an assigned WLM to run under. The external program comes
back to DBM1 to get its package loaded and SQL statements executed. This is what gets
“throttled" (the external program execution environments and their associated TCBs).
When an incoming stored procedure request is queued for WLM, the DB2 thread is
suspended in DBM1. Many customers have experienced delays and DBM1 storage
problems when their WLM goals weren't adjusted properly and the queued requests built
up. The solution is to either adjust the WLM goals, or else adjust the limit on DB2 threads
(local and/or distributed). For external stored procedures, the stored procedure definition
and the program logic are two separate components with the Bind parameters being part
of the external programs package generation.

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-3

DRDA® activity is a candidate for zIIP rerouting. Remote native SQL procedures being
called through a distributed thread run under an enclave’s SRB instead of a TCB in the
DBM1 address space are candidates for zIIP rerouting with DB2 V9. The zIIP is a specialty
engine (System z9™ Integrated Information Processor) and if one is available, z/OS will
manage and direct work between the general purpose processor (the portion of the
mainframe that traditionally has handled the z/OS workload) and the zIIP specialty
engine(s). Work that runs on the zIIP does not incur software charges and factor into
software pricing based on the service units consumed; therefore it is a very attractive
lower-cost alternative to running workloads on a general purpose processor. Many
customers have gone to native stored procedures specifically for this reason. This also
reduces the workload on the Central Processor so additional work can be run if needed.

Information about external SQL language and native SQL language stored procedures is
contained in the following tables:

 SYSIBM.SYSENVIRONMENT

 SYSIBM.SYSROUTINES_OPTS

 SYSIBM.SYSROUTINES_SRC

 SYSIBM.SYSROUTINESTEXT

 SYSIBM.SYSROUTINESAUTH

Exploiting Native SQL Stored Procedures

C-4 © 2017 Themis, Inc. All rights reserved.

Advantages of Native Stored
Procedures:

 Simplified Build / Deploy process: No external address space environment needed and
no compilers. The IBM Data Studio tool provides a great editor window and
deployment for the SQL PL language, making it very easy to code, debug, test, and
deploy.

 Better Performance (at times): It is not a guarantee that a native stores procedure will
always outperform an external stored procedure. But the fact that it is run entirely in
the DB2 engine versus an external address space and an assigned WLM environment
gives it a boost. The SQL PL language is a procedural language that is converted to byte
code and stored in the package. At run time it is then compiled further and executed.
This is not always as efficient as compiled ‘C’, Cobol, etc. Stored procedures with a lot of
processing code may not always be as efficient. This process has improved some in
V10. V10 has a REGENERATE statement that is part of the ALTER that will not only
REBIND the SQL DML statements for possible better access paths, but also regenerate
the SQL Control statements for better efficiency.

 zIIP eligible: Native SQL procedures are eligible for offloading to a zIIP. If a native SQL
procedure is called from a DRDA client using TCP/IP, then a portion of the SQL
procedure processing is directed to a zIIP.

 Compatibility: z/OS offers SQL PL language that is now more compatible with DB2
LUW, and other platforms.

 Easy to Learn: The SQL PL language is an easy language to learn for any developer.

SP Naming/Authorization: A native stored procedure is like any other DB2 object, where its
name consists of 2 parts (an owner/schema and the SP name). Native stored procedures by
default will take on the owner/schema of the Collection ID it gets bounds into, that is the
collection ID in the bind process will be the same as the schema name defined in the Create
Procedure. For native stored procedures, the bind parameters are now a part of the SP
header information because in the deployment, the code will be bound into a package.

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-5

1) Typically, it’s best to put a native stored procedure in a Collection ID that matches the
owner/schema of the tables being processed. For example: if the tables being pro-
cessed are all under STESTID, then the stored procedure should be bound into a collec-
tion named STESTID which happens automatically if the stored procedure gets named
and deployed as STESTID.SPNAME. This often goes against the normal DBA naming
conventions for collections, but makes it easy for developers to code unqualified stored
procedure calls, and have the call fall under the assigned qualifier specified in their own
bind parameters.

You may have to execute the following:

‘GRANT CREATEIN ON SCHEMA STESTID TO XXXXXXXX’.

The CREATEIN privilege is always required to create a stored procedure in a given
schema. By executing the CREATE on SCHEMA, this allows

Since there may be many application developers or DBAs creating native stored
procedures into the same schema, you may want to grant the CREATEIN privilege on
the schema to a secondary authid that represents a group of users who create stored
procedures. Each application developer could then issue a SET CURRENT SQLID
statement to the secondary authid, or set it in Data Studio as part of the deploy wizard.

In the IBM Data Studio tool, the deploy wizard asks to pick a target schema. Whatever
is in this schema name will become the collection ID the package is created in. The
following screen shot states target schema as STESTID which becomes the collection ID.

Exploiting Native SQL Stored Procedures

C-6 © 2017 Themis, Inc. All rights reserved.

2) Note that in Data Studio, the Target Schema specified in the deploy wizard controls both
the owner of the stored procedure and the collection Id where the stored procedure is
bound into, unless PACKAGE OWNER is specified in the Create Procedure header. When
this is stated then the target schema only controls the collection ID. If secondary
authids are being used, then that secondary authid needs to have the appropriate
privileges, and the developer creating the stored procedure should have PACKAGE
OWNER XXXXXXXX where XXXXXXXX contains the secondary authid.

3) If the stored procedure being created contains SQL statements, a package will be
created and stored in the DB2 catalog. The BINDADD privilege is required to create new
packages in a DB2 subsystem. The SQL to grant BINDADD privilege to authid PGRM123
is as follows: GRANT BINDADD TO ‘PGRM123’.

The authorization ID used to create the native stored procedure package must have the
following privileges. If a secondary auth ID is being used, then that ID is the one needing
these privileges.

 BINDADD

 CREATE IN COLLECTION collection

 CREATEIN ON SCHEMA schema

4) There must also be an EXECUTE privilege on the stored procedure.

5) Native stored procedures do not need to have their collection bound to a plan, unless
the stored procedure is being called from packages that execute under a plan. Typically
native stored procedures are first written to be called from distributed threads where
binding the Collection ID to a plan does not come into play.

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-7

SQL PL Header: The first part of a SQL PL stored procedure (the header) contains
information about the parameters to be passed to and from the procedure, as well as
additional options that control the behavior of the procedure. And since the procedure will
be bound into a package, the header area will also contain its bind options for the package.
The created package will be larger than a typical package in that it contains both the
optimized SQL and the procedure processing byte code.

Parameters:

 Inout Parameters: Only the parameters defined as Inout can both programs set and
the other program see.

 Input Parameters: Input only to the stored procedure. If the stored procedure
program overlays the input parameter, it is not seen from the calling program.

 Output Parameters: These parameters all always received as null to the stored
procedure (no matter what the calling programs initializes them to), and thus should
be initialized first thing in the processing code of the stored procedure code.

I like the idea of having parameters follow naming rules:

 All begin with either P_IN, P_INOUT, or P_OUT

SQL PL Body: This is the program processing code, and the order in which the SQL Body is
laid out is extremely important. If any of the following are out of physical order, then
confusing syntax errors occur in the deploy process. This does not mean that processing
code has to have something defined in each of these areas, but if there exist code for any of
these areas they must be in the following order.

1) Declare Variables

2) Declare any Conditions

3) Declare Cursors

4) Declare Error Handlers

5) Processing Code

In SQL PL, a variable is a meaningful name of a temporary storage location that supports a
particular data type in the program. In order to use a variable, you need to declare it in top
of the SQL PL block before any error handling routines or declare cursors reference them.

Exploiting Native SQL Stored Procedures

C-8 © 2017 Themis, Inc. All rights reserved.

SQL PL Variable Naming Convention: Like other programming languages, a variable in SQL
PL must follow the naming rules as below. I particularly like to have all variable names
begin with V_.

 The variable name may be up to 128 characters. Try to make it as meaningful as
possible.

 The starting of a variable must be an ASCII letter. It can be either lowercase or
uppercase. Note that SQL PL is not case-sensitive.

 A variable name can contain numbers, underscore, and dollar sign characters followed
by the first character. Again, do not make your variable names hard to read or
understand. Make it easy for others understand and maintain in the future. Dashes are
not allowed.

 Variables are only available to the procedure itself.

 Definitions are identical to the manner in which DB2 table columns are defined and
must use the same data types.

 All variables must be defined before any error handlers or declare cursors. It is
recommended to place them right away in the SQL body (P1: Begin …)

 Variable names can be the same names as columns, but is not recommended. If it is
ambiguous to the compiler, it assumes it is a parameter or variable name.

 Variable names are not case sensitive. This means you cannot have a variable
V_LASTNAME and one v_lastname.

 Variable names use underscores in them, dashes create errors. For example a declared
variable for V-LASTNAME will get an error.

 In the SQL/PL language are variables are considered SQL variables, and thus are not
preceded by a colon ‘:’ within the source code.

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-9

Nulls

When selecting data into host variables, do not define and include null indicators as part of
the SELECT INTO. Null indicators are used in Cobol and some other languages, but not in
SQL PL. Select the column directly into the host variable, then check the host variable for
NULL.

For example:

 SELECT MGRNO
 INTO V_MGRNO
 FROM DEPT
 WHERE ……

 IF V_MGRNO IS NULL THEN
 SET V_MGRNO = ‘ ‘;
 ELSE
 SET P_OUT_MGRNO = V_MGRNO;
 END_IF;

The COALESCE function will also work, setting the default of spaces if the value is null
coming back from DB2: The VALUE and IFNULL functions also work and do the exact same
logic as the COALESCE. The COALESCE is the ANS/ISO standard and it is recommended
that it be used. For example:

 SELECT COALESCE(MGRNO, ‘ ‘)
 INTO V_MGRNO
 FROM DEPT
 WHERE ……

 SET P_OUT_MGRNO = V_MGRNO;

Rebinds

If native stored procedures packages need rebound with any new / different bind
parameters, the ‘Create Procedure’ DDL will need to be changed also, then rerun.

This is an easy process in the IBM Data Studio tool, where the header information is
changed and the Deploy is run again. In this tool, subsequent deploys on an already created
stored procedure actually runs a Alter Procedure statement.

Exploiting Native SQL Stored Procedures

C-10 © 2017 Themis, Inc. All rights reserved.

Parameter Changes

This is the same as external stored procedures in that if there are any parameter changes
(definition changes, adding or deleting another parameter), the stored procedure must be
dropped, committed, and then recreated/redeployed.

Checking for Not Found Condition

Should have a specific error handler for not found, as follows.

 Declare Continue Handler for not found
 Begin
 set v_sqlcode = sqlcode;
 End;

V_sqlcode has to be one of the declared variables, defined the same as Sqlcode which is
integer.

After any SQL statements where a not found is possible, if +100 is returned, the v_sqlcode
gets set to +100 because of the continue handler above. This v_sqlcode needs to be
checked after the SQL statement, not the actual Sqlcode. The actual Sqlcode of +100 will
get reset to 0 after the ‘set v_sqlcode = sqlcode’ is executed. This statement should always
be the first statement in every error handling logic, and SQL PL processing code should
always check the v_sqlcode within its logic, and not the sqlcode directly.

Make sure before each statement that could return a sqlcode of +100, that the v_sqlcode is
set to 0. It could still have a +100 from some previous statement in the code, and if the
sqlcode is 0, then the Not Found continue handler is not executed. For example:

 SET V_SQLCODE = 0;
 SELECT MGRNO
 INTO V_MGRNO
 FROM DEPT
 WHERE DEPTNO = V_DEPTNO
 AND LOC = V_LOC
 WITH UR;

 IF V_SQLCODE = 0 THEN
 SET …… ;

 END IF;

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-11

Error Handlers: Capturing SQLCODE and SQLSTATE:

If the following variables are declared in the code, then they will be populated after each
SQL statement executed in the code. Each SQL statement is both a database calls and an
SQL PL procedural statements.

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT ‘00000’;

It is not possible to retrieve other information on a call (as in the Cobol SQLCA area being
populated) without executing a GET DIAGNOSTICS command. This is the statement used to
gather further information based on any returned SQLCODE.

Note: Every SQL PL procedural statement will return a SQLCODE and SQLSTATE.

For example:

Set V_ACCT_NUM = 0 ; Sets the SQLCODE and SQLSTATE.

IF V_ACCT_NUM > 0 then Sets the SQLCODE and SQLSTATE.
 ……………
 Case
 When V_ACCT_NUM = 0 then … Sets the SQLCODE and SQLSTATE

 Fetch into ….. Sets the SQLCODE and SQLSTATE.

In the following example, the P_RETCODE will get set to 0 because the ‘IF’ check on
SQLCODE = +100 resets the SQLCODE back to 0. This is a real SQL PL programming

 ‘Gotcha’.

 Fetch C1 into V_ACCT_NUM;
 IF SQLCODE = +100 then  SQLCODE gets reset to 0
 Set P_RETCODE = SQLCODE;  P_RETCODE gets set to 0
 END IF;

Exploiting Native SQL Stored Procedures

C-12 © 2017 Themis, Inc. All rights reserved.

Error Handlers: EXIT and CONTINUE:

Exit and Continue handlers are defined to be executed whenever certain errors occur
within the procedural code. These are defined at the top of the code after any declared
variables and declared cursors. They will contain statements to be executed whenever any
errors (database calls or procedural statements) that occur. These are very similar to the
CICS Handlers defined in CICS code. These exit and continue handlers get defined once,
then anywhere within the processing code an error occurs, processing automatically jumps
to one of these routines.

Note: If no error handlers exist, and an SQL error occurs in the stored procedure, the SQL
error code is immediately returned to the calling program as an error on the SQL CALL.
This can be misleading because the CALL was actually good yet an error occurred within
the stored procedure.

Exit handlers are defined as either EXIT or CONTINUE. That means when the handler is
automatically initiated due to an error, the code within the handler will execute and then
either EXIT back to the calling program or CONTINUE after the statement where the error
occurred. For example: SQLEXCEPTION is for any negative SQLCODE error.

DECLARE V_SQLMSG VARCHAR(250) DEFAULT ‘ ‘;
DECLARE V_LINE_NUM INTEGER DEFAULT 0;
DECLARE V_REASON_CODE INTEGER DEFAULT 0;
DECLARE V_SQLCODE_OUT INTEGER DEFAULT 0;

DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN

 GET DIAGNOSTICS CONDITION 1
 V_SQLMSG = MESSAGE_TEXT
 , V_LINE_NUM = DB2_LINE_NUMBER
 , V_REASON_CODE = DB2_REASON_CODE
 , V_SQLCODE_OUT = DB2_RETURNED_SQLCODE;

 SET P_RETCODE = SQLCODE;

 END;

 DECLARE CONTINUE HANDLER FOR NOT FOUND
 BEGIN
 SET V_RETCODE = SQLCODE;
 END;

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-13

Exit or Continue Handlers can be defined for the following conditions.

SQLEXCEPTION: Any negative SQLCODEs that occur.
SQLWARNING : Any positive SQLCODEs that occur (except +100 Not Found).
NOT FOUND : SQLCODE = +100.

or

For specific handlers. The associated SQLSTATE must be specified. For example if you
want to capture a duplicate insert (SQLCODE = -803), you would code:

DECLARE CONTINUE HANDLER FOR SQLSTATE ‘23505’

 BEGIN
 SET V__RETCODE = SQLCODE;
 END;

Note: For an SQLCODE = -803, the code will jump to this continue handler, and all other
negative SQLCODEs will jump to the SQLEXCEPTION handler.

A +100 will not jump to a defined SQLWARNING handler.

Get Diagnostics: This statement is needed to obtain further information on an error because
the only 2 pieces of error information that automatically gets sent from DB2 are the
SQLCODE and SQLSTATE. A declared variable must be defined for DB2 to place the
additional information into. Following are the definitions for all the different pieces of
information that can be retrieved by calling the Get Diagnostics. This statement will return
diagnostic information about the last SQL statement that was executed, and return
information about the following:

Statement: Diagnostic information about the statement as a whole (Condition 1)

Condition Items: This would be for condition items other than 1, and is used with multi
row processing. This can contain information about individual errors that occurred within
a multi row processing statement.

Connection: This contains information about the SQL statement if it was a connect
statement.

Exploiting Native SQL Stored Procedures

C-14 © 2017 Themis, Inc. All rights reserved.

The most common diagnostic informational items would be:

 MESSAGE_TEXT: Message text from statement in error. VARCHAR(250) should be
sufficient.

 DB2_RETURNED_SQLCODE: SQLCODE from statement in error.

 RETURNED_SQLSTATE: SQLSTATE from statement in error.

 DB2_LINE_NUMBER: Line number of statement within SQL PL code.

 DB2_REASON_CODE: Reason code for the SQLCODE statement in error.

The following are diagnostic informational items that match up to what is returned in the
SQLCA area of Cobol programs.

 DB2_MODULE_DETECTING_ERROR.

 DB2_SQLERRD_SET.

 DB2_SQLERRD1.

 DB2_SQLERRD2.

 DB2_SQLERRD3.

 DB2_SQLERRD4.

 DB2_SQLERRD5.

 DB2_SQLERRD6.

Here is the link to the Get Diagnostics description and definitions:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Fdb2%2Frbaf
zmstgetdiag.htm

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Fdb2%2Frbafzmstgetdiag.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Fdb2%2Frbafzmstgetdiag.htm

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-15

Table 55. Data Types for GET DIAGNOSTICS Items

Item Name Data Type

Statement Information Item

COMMAND_FUNCTION VARCHAR(128)

COMMAND_FUNCTION_CODE INTEGER

DB2_DIAGNOSTIC_CONVERSION_ERROR INTEGER

DB2_GET_DIAGNOSTICS_DIAGNOSTICS VARCHAR(32740)

DB2_LAST_ROW INTEGER

DB2_NUMBER_CONNETIONS INTEGER

DB2_NUMBER_PARAMETER_MARKERS INTEGER

DB2_NUMBER_RESULT_SETS INTEGER

DB2_NUMBER_ROWS DECIMAL(31,0)

DB2_NUMBER_SUCCESSFUL_SUBSTMTS INTEGER

DB2_RELATIVE_COST_ESTIMATE INTEGER

DB2_RETURN_STATUS INTEGER

DB2_ROW_COUNT_SECONDARY DECIMAL(31,0)

DB2_ROW_LENGTH INTEGER

DB2_SQL_ATTR_CONCURRENCY CHAR(1)

DB2_SQL_ATTR_CURSOR_CAPABILITY CHAR(1)

DB2_SQL_ATTR_CURSOR_HOLD CHAR(1)

DB2_SQL_ATTR_CURSOR_ROWSET CHAR(1)

DB2_SQL_ATTR_CURSOR_SCROLLABLE CHAR(1)

DB2_SQL_ATTR_CURSOR_SENSITIVITY CHAR(1)

DB2_SQL_ATTR_CURSOR_TYPE CHAR(1)

DYNAMIC_FUNCTION VARCHAR(128)

DYNAMIC_FUNCTION_CODE INTEGER

MORE CHAR(1)

NUMBER INTEGER

ROW_COUNT DECIMAL(31,0)

TRANSACTION_ACTIVE INTEGER

TRANSACTIONS_COMMITTED INTEGER

TRANSACTIONS_ROLLED_BACK INTEGER

Exploiting Native SQL Stored Procedures

C-16 © 2017 Themis, Inc. All rights reserved.

Table 55. Data Types for GET DIAGNOSTICS Items

Item Name Data Type

Connection Information Item

CONNECTION_NAME VARCHAR(128)

DB2_AUTHENTICATION_TYPE CHAR(1)

DB2_AUTHORIZATION_ID VARCHAR(128)

DB2_CONNECTION_METHOD CHAR(1)

DB2_CONNECTION_NUMBER INTEGER

DB2_CONNECTION_STATE INTEGER

DB2_CONNECTION_STATUS INTEGER

DB2_CONNECTION_TYPE SMALLINT

DB2_DYN_QUERY_MGMT INTEGER

DB2_ENCRYPTION_TYPE CHAR(1)

DB2_PRODUCT_ID VARCHAR(8)

DB2_SERVER_CLASS_NAME VARCHAR(128)

DB2_SERVER_NAME VARCHAR(128)

Condition Information Item

CATALOG_NAME VARCHAR(128)

CLASS_ORIGIN VARCHAR(128)

COLUMN_NAME VARCHAR(128)

CONDITION_IDENTIFIER VARCHAR(128)

CONDITION_NUMBER INTEGER

CONSTRAINT_CATALOG VARCHAR(128)

CONSTRAINT_NAME VARCHAR(128)

CONSTRAINT_SCHEMA VARCHAR(128)

CURSOR_NAME VARCHAR(128)

DB2_ERROR_CODE1 INTEGER

DB2_ERROR_CODE2 INTEGER

DB2_ERROR_CODE3 INTEGER

DB2_ERROR_CODE4 INTEGER

DB2_INTERNAL_ERROR_POINTER INTEGER

DB2_LINE_NUMBER INTEGER

DB2_MESSAGE_ID CHAR(10)

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-17

Table 55. Data Types for GET DIAGNOSTICS Items

Item Name Data Type

DB2_MESSAGE_ID1 VARCHAR(7)

DB2_MESSAGE_ID2 VARCHAR(7)

DB2_MESSAGE_KEY INTEGER

DB2_MODULE_DETECTING_ERROR VARCHAR(128)

DB2_NUMBER_FAILING_STATEMENTS INTEGER

DB2_OFFSET INTEGER

DB2_ORDINAL_TOKEN_n VARCHAR(32740)

DB2_PARTITION_NUMBER INTEGER

DB2_REASON_CODE INTEGER

DB2_RETURNED_SQLCODE INTEGER

DB2_ROW_NUMBER INTEGER

DB2_SQLERRD_SET CHAR(1)

DB2_SQLERRD1 INTEGER

DB2_SQLERRD2 INTEGER

DB2_SQLERRD3 INTEGER

DB2_SQLERRD4 INTEGER

DB2_SQLERRD5 INTEGER

DB2_SQLERRD6 INTEGER

DB2_TOKEN_COUNT INTEGER

DB2_TOKEN_STRING VARCHAR(70)

MESSAGE_LENGTH INTEGER

MESSAGE_OCTET_LENGTH INTEGER

MESSAGE_TEXT VARCHAR(32740)

PARAMETER_MODE VARCHAR(5)

PARAMETER_NAME VARCHAR(128)

PARAMETER_ORDINAL_POSITION INTEGER

RETURNED_SQLSTATE CHAR(5)

ROUTINE_CATALOG VARCHAR(128)

ROUTINE_NAME VARCHAR(128)

ROUTINE_SCHEMA VARCHAR(128)

SCHEMA_NAME VARCHAR(128)

Exploiting Native SQL Stored Procedures

C-18 © 2017 Themis, Inc. All rights reserved.

Table 55. Data Types for GET DIAGNOSTICS Items

Item Name Data Type

SERVER_NAME VARCHAR(128)

SPECIFIC_NAME VARCHAR(128)

SUBCLASS_ORIGIN VARCHAR(128)

TABLE_NAME VARCHAR(128)

TRIGGER_CATALOG VARCHAR(128)

TRIGGER_NAME VARCHAR(128)

TRIGGER_SCHEMA VARCHAR(128)

Error Processing: When an SQL error occurs within the stored procedure, the error needs
to be logged somewhere. Does the stored procedure log the error? Does the calling
program log the error? Does it get logged into a DB2 table or somewhere else? Should a
commit be done, and which process should manage the commits, the calling program or the
stored procedure? This varies from shop to shop, but following are some guidelines.

Error Logging: Logging the error should be done from within the stored procedure, or
error information will need to be passed back to the calling program, or both. Some shops
have defined output parameters specifically for error processing that gets captured from
the stored procedure GET DIAGNOSTICS command. Even though 99.9% of the time the
stored procedure executing in production is error free many shops like to have 5 or 6
output parameters for errors to pass back to let the calling program logged the error. Many
times this is because a stored procedure may be called from multiple places, with each
environment logging errors differently (for example Websphere vs Java vs Cobol batch).
Best practices say for the stored procedure to log the error, and then send the SQLCODE in
error back as an output parameter to the calling program, or… the stored procedure calls a
Cobol stored procedure that displays the error information in the Workload Manager job
sysout, and then passes the same error pieces back to the calling program as output
parameters. Calling programs should always be checking 2 statuses when they call a stored
procedure. Was the SQL call to the stored procedure good and did the store procedure
execute OK? The output parameter containing the last SQLCODE tells the calling program
whether the stored procedure executed normally, and any output error parameters will
have the information needed for the calling program to log .

Where to Log: Errors need to be logged either in a DB2 Error log table, or a VSAM error log
file. The consistent process would be for the native stored procedure to call a Cobol stored
procedure passing all the error pieces as input parameters. The Cobol stored procedure
receives the input parameters, displays the information in the Workload Manager job
sysout, and possibly writes the information to a VSAM file. If the native stored procedure
logs the information into a DB2 table, then commit and rollback issues come into play for
the unit of work being executed. Having the error information written to a VSAM file
ensures the error never gets lost no matter what the calling process decides to do (commit
or rollback). However if a native stored procedure is used in read only processes, then

 Native Stored Procedures Best Practices

© 2017 Themis, Inc. All rights reserved. C-19

logging into a DB2 error table may be acceptable. IT applications will probably want
consistency in stored procedure error processing (native or external), so it’s best to
understand any current processing in your shop.

Commit/Rollback: Typically a stored procure being called is just a part of the unit of work
being executed. Because of this, the calling program should be the one to decide when an
error occurred whether to commit or rollback. Because some native stored procedures
may be called from many different processes, it is a best practice for the native stored
procedure to just log the error and return to the caller with an output parameter noting
that an error occurred. Every stored procedure (whether native or not) should have an
output parameter defined to let the calling program know that it processed as defined, or
some error occurred. Typically this is communicated through an output parameter defined
as an integer definition with it getting set to the last SQLCODE that occurred in the
processing. This way the calling program will know whether the stored procedure
processed as defined or not. V11 has an AUTONOMOUS parameter that can be added at
the end of the header information that gives the stored procedure autonomy to executing
commits and rollbacks without affecting the calling programs unit of work.

Bind / Deploy: For native stored procedures only:

This bind process allows you to take an already existing and tested native stored procedure
and deploy (create) it in other environments. This is a Bind process that can be built into
any existing change management process in order to promote these from one environment
to another. For example:

 BIND PACKAGE(CHICAGO.DBPROD)
 DEPLOY(DBTHM.SP3N) COPYVER(VR2)
 ACTION(ADD) QUALIFIER(THEMISPD

This Bind Deploy will create a new SP called DBPROD.SP3N VR2 at the Chicago location by
copying it from the DBTHM.SP3N VR2 stored procedure. When creating the new stored
procedure at the Chicago location, the stored procedures will be created with a qualifier of
THEMISPD. This may have not been the same qualifier as in DBTHM.SP3N VR2.

CHICAGO = Location/LPAR

DBPROD = Owner/Schema of newly created/deployed stored procedure

DBTHM.SP3N = Original / Copied from

Qualifier = Qualifier used for the new DBPROD.SP3N stored procedure.

	Native Stored Procedures Best Practices
	Advantages of Native Stored Procedures:

